Bibliografia

Adaptaciones de los seres vivos

Las adaptaciones son aquellos aspectos llamativos del mundo de los seres vivos, que como Darwin señaló acertadamente “con razón provocan nuestra admiración”. Los organismos y todas sus partes tienen un sentido de intencionalidad, una complejidad muy organizada, precisión y eficacia, y una ingeniosa utilidad.
Uno de los ejemplos favoritos de Darwin era el pico y la lengua del pájaro carpintero, magníficamente ideados para extraer los insectos enterrados en la corteza de los árboles, y los no menos impresionantes mecanismos del cerebro y de la conducta, que aseguran que la víctima obtenida con tanta dificultad es del agrado del pájaro carpintero. O asombrarnos ante las llamadas de peligro de algunos monos, que son diferentes dependiendo de si el depredador es una pitón, un águila, o un leopardo, con respuestas distintas de los que las reciben, que miran hacia abajo, arriba, o corren hacia los árboles. O contrastar el sutil moteado de un insecto camuflado, con los colores llamativos de especies estrechamente relacionadas que mimetiza la librea de un grupo de animales nocivos. O pensar en la sensatez de la hembra urogallo rechazando pretendientes que tienen cicatrices visibles de parásitos, y de las hembras de ratón que prefieren el olor de los machos sin parásitos. O en la legra del pene de un caballito del diablo, hábilmente concebido para desplazar el esperma rival antes de que el propietario lo deposite. O en las increíbles condiciones ambientales de los montículos de las termitas, que mantienen una temperatura constante a pesar de los días calurosos y noches heladas de la sabana. O en las orquídeas que atraen polinizadores por su increíble parecido a las abejas hembra dejando su polen sobre el dorso de su defraudado visitante.
3. CÓMO SE PRODUCE LA ADAPTACIÓN: SELECCIÓN NATURAL Darwin consideró de forma acertada la adaptación como el problema central que tenía que resolver cualquier teoría de la evolución. Y su teoría de la selección natural lo conseguía con creces. Para ésta, la adaptación se produce a través de la selección natural, gradualmente, de forma acumulativa, ajustadas por fuerzas selectivas en ambientes que han cambiado durante millones de años.
3.1. Fenotipos ampliados Los efectos fenotípicos de los genes no se limitan al cuerpo, cerebro o pensamiento de los organismos que albergan el gen. Estos pueden extenderse más allá del organismo. Pensemos en el comportamiento paralizado de un pájaro que anida o de una araña que teje su tela, de los genes en los cucos manipulando a sus padres embaucados; en los de anfípodos (criaturas del tipo de los camarones), que se vuelven muy llamativos para los depredadores y constituyen el siguiente paso en el ciclo vital de sus parásitos, conducta fatal para ellos pero muy buena para el parásito.
4. CÓMO SE CREA LA CARACTERÍSTICA: SELECCIÓN DARWINIANA La selección natural implica cambios aleatorios (errores de copia durante la replicación). Influidos por fuerzas ambientales, éstos prosperan o se pierden en las sucesivas generaciones dependiendo de cómo encajen en el ambiente.
Este proceso de variación, selección y diferenciación aleatorias no está limitado a la selección natural. De hecho, se sabe que es el único proceso mediante el cual la creación surge en ausencia de un creador, y de forma natural sin intervención inteligente. Darwin (y su coodescubridor Wallace) elaboraron un método de lo que hoy se reconoce que es una solución clásica al problema de explicar cualquier resultado que simule un plan deliberado.
4.1. Azar. Antes del descubrimiento de Darwin, la única solución alternativa a la existencia de un creador todopoderoso era la reivindicación de que las adaptaciones se habían producido al azar. Pero esto es insuficiente para explicar su exquisita organización. Efectivamente, podemos pensar en las adaptaciones como en máquinas muy complejas, como en diseños de extraordinario funcionamiento a los que no es posible haber accedido por azar. Donde la selección natural actúa desde el caldo primitivo a orquídeas y caballitos del diablo a través de millones de pequeños cambios, cada uno no muy diferente del anterior, la evolución fortuita precisará de un salto único desde el caldo primitivo hasta organismos de funcionamiento sofisticado, en un sólo suceso improbable.
El azar juega un papel en la evolución. Este elemento, por ejemplo, existe en las mutaciones. Y, por supuesto, existe la ocurrencia de accidentes. Y de acuerdo con la teoría neutral de la evolución molecular, las reglas del azar provocan un cambio a nivel molecular y genético (aunque sin dar lugar a efectos fenotípicos). Aunque, sin embargo, remotas casualidades puedan modelar los organismos, esto no puede justificar las adaptaciones, o las características creadas de los seres vivos. No todo lo referente a un organismo es producto de la selección natural. Pero sí todo lo referido a la adaptación.
5. CÓMO COMPRENDER LOS PROPÓSITOS: CONSTRUCCIÓN INVERSA Sabemos que una adaptación tiene un sentido de utilidad referido a algún propósito. ¿Cómo podemos descubrir cuál es su fin? El truco es considerar la adaptación como si fuera un objeto diseñado. Lo analizamos como si fuera un artefacto y tratamos de encontrar los principios de creación que nos conducen a él. Esta es una herramienta de estudio común a muchas profesiones y se conoce por construcción inversa. Imagine que es un constructor de aviones que desea plagiar otro de una compañía rival. Estudiaría su producto y ante cada característica planificada en apariencia se preguntaría el por qué y trataría de descubrir qué es lo que sus diseñadores tenían en mente.
Ahora consideremos aves que vuelan. El análisis aerodinámico de las alas de los buitres demuestra que su gran área de superficie y sus bordes con muescas están diseñadas para planear. Por el contrario, la estrechez y los bordes lisos de las alas de los albatros son prueba de que su propósito es el vuelo de navegación.
Hasta hace poco, nosotros podíamos construir en sentido contrario sólo el producto final, la adaptación no el lento y acumulado trabajo de millones de años que la había producido. En la actualidad las simulaciones por medio de equipos informáticos pueden mostrarnos la evolución de este trabajo. La determinación de los caminos seguidos es una parte importante para completar el análisis funcional.
La construcción inversa explica el diseño exacto de las alas de los buitres y de los albatros. A la inversa, un marciano que nunca hubiera visto pájaros de la tierra podría deducir de sus alas las distintas condiciones atmosféricas en las que se utilizan, para planear, a favor de las corrientes de aire, y para navegar, con movimiento horizontal de aire, aunque con una velocidad desigual. Esta información exacta queda reflejada en las alas a través de una interacción entre los antecesores de los pájaros y su medio ambiente.
Por lo tanto, la construcción inversa (el análisis de las soluciones adaptativas) y la reconstrucción del medio ambiente (el análisis de problemas adaptativos) son complementarios. Son aspectos interdependientes de la comprensión de las adaptaciones.

Deriva continental, diversidad y clima

La posición de los continentes resulta un factor determinante en la conformación del clima mundial. La deriva continental es un proceso sumamente lento, por lo que la posición de los continentes fija el comportamiento del clima durante millones de años. Hay dos aspectos a tener en cuenta. Por una parte, las latitudes en las que se concentra la masa continental: si las masas continentales están situadas a nivel de latitudes bajas, habrá pocos glaciares continentales y, en general, temperaturas medias menos extremas. Asimismo, si los continentes se hallan muy fragmentados habrá menos continentalidad. Estos aspectos pueden contribuir de varias formas contradictorias en el clima.
Distribución actual de los continentes
Actualmente hay un exceso de masa continental poco fragmentada en el
hemisferio norte, lo que provoca una mayor continentalidad y la existencia de más glaciares. Esto hace que el albedo del hemisferio norte sea mayor y contribuya a lo extremado de los climas y sus mayores oscilaciones en dicho hemisferio: inviernos más crudos y veranos más calurosos. Esto es debido a la continentalidad. La concentración continental en un hemisferio contribuye también a las fluctuaciones o pulsaciones glaciales. Éstas son debidas, como se verá más abajo, a las oscilaciones orbitales que hacen que unas épocas los inviernos en el norte coincidan cerca del afelio de la órbita y otras del perihelio. Contra lo que se pueda pensar no son los inviernos rigurosos sino los veranos suaves los que rigen los ritmos glaciales. Por ello en las grandes glaciaciones del pleistoceno los inviernos del hemisferio norte suelen coincidir cerca del perihelio orbital. Un verano suave no fundiría tanta nieve y traería como consecuencia el que los glaciares avanzasen. Así se genera un efecto en cadena que termina por afectar también al hemisferio sur, en el cual avanzan también los glaciares de montaña¹. Esta historia se ha repetido periódicamente según las oscilaciones orbitales, tal y como explicó Milutin Milankovitch La existencia de glaciares continentales permanentes es posible gracias a que hay un continente, la Antártida, que se sitúa sobre el polo sur y a que las masas continentales del norte rodean un pequeño océano boreal al que no permiten que lo alcancen las corrientes cálidas. Existiendo siempre esa reserva de hielo permanente es comprensible que cada cierto tiempo se expandan alcanzando latitudes menores. Así pues, se observa que la configuración actual favorece que dichos fenómenos extremos se den periódicamente. l ¹ En el hemisferio sur los únicos glaciares continentales importantes se concentran en la Antártida, totalmente cubierta por el hielo. Los principales glaciares de montaña en el sur se sitúan en los Andes, el Kilimanjaro y Nueva Zelanda. Debido a todo ello para medir el avance o retroceso de los glaciares en el sur se usan como indicadores los de montaña.

Diversidad Biologica

La biodiversidad es la totalidad de los genes, las especies y los ecosistemas de una región. La riqueza actual de la vida de la Tierra es el producto de cientos de millones de años de evolución histórica. A lo largo del tiempo, surgieron culturas humanas que se adaptaron al entorno local, descubriendo, usando y modificando recursos bióticos locales. Muchos ámbitos que ahora parecen "naturales" llevan la marca de milenios de habitación humana, cultivo de plantas y recolección de recursos. La biodiversidad fue modelada, además, por la domesticación e hibridación de variedades locales de cultivos y animales de cría.
La biodiversidad puede dividirse en tres categorías jerarquizadas--los genes, las especies, y los ecosistemas--que describen muy diferentes aspectos de los sistemas vivientes y que los científicos miden de diferentes maneras; a saber:
Diversidad Genética
Por diversidad genética se entiende la variación de los genes dentro de especies. Esto abarca poblaciones determinadas de las misma especie (como los miles de variedades tradicionales de arroz de la India) o la variación genética de una población (que es muy elevada entre los rinocerontes de la India, por ejemplo, y muy escasa entre los chitas). Hasta hace poco, las medidas de la diversidad genética se aplicaban principalmente a las especies y poblaciones domesticadas conservadas en zoológicos o jardines botánicos, pero las técnicas se aplican cada vez más a las especies silvestres.
Diversidad de Especies
Por diversidad de especies se entiende la variedad de especies existentes en una región. Esa diversidad puede medirse de muchas maneras, y los científicos no se han puesto de acuerdo sobre cuál es el mejor método. El número de especies de una región--su "riqueza" en especies--es una medida que a menudo se utiliza, pero una medida más precisa, la "diversidad taxonómica" tiene en cuenta la estrecha relación existente entre unas especies y otras. Por ejemplo: una isla en que hay dos especies de pájaros y una especie de lagartos tiene mayor diversidad taxonómica que una isla en que hay tres especies de pájaros pero ninguna de lagartos. Por lo tanto, aun cuando haya más especies de escarabajos terrestres que de todas las otras especies combinadas, ellos no influyen sobre la diversidad de las especies, porque están relacionados muy estrechamente. Análogamente, es mucho mayor el número de las especies que viven en tierra que las que viven en el mar, pero las especies terrestres están más estrechamente vinculadas entre sí que las especies océanicas, por lo cual la diversidad es mayor en los ecosistemas marítimos que lo que sugeriría una cuenta estricta de las especies.
Diversidad de los Ecosistemas
La diversidad de los ecosistemas es más difícil de medir que la de las especies o la diversidad genética, porque las "fronteras" de las comunidades--asociaciones de especies--y de los ecosistemas no están bien definidas. No obstante, en la medida en que se utilice un conjunto de criterios coherente para definir las comunidades y los ecosistemas, podrá medirse su número y distribución. Hasta ahora, esos métodos se han aplicado principalmente a nivel nacional y subnacional, pero se han elaborado algunas clasificaciones globales groseras.
Además de la diversidad de los ecosistemas, pueden ser importantes muchas otras expresiones de la biodiversidad. Entre ellas figuran la abundancia relativa de especies, la estructura de edades de las poblaciones, la estructura de las comunidades en una región, la variación de la composición y la estructura de las comunidades a lo largo del tiempo y hasta procesos ecológicos tales como la depredación, el parasitismo y el mutualismo. En forma más general, para alcanzar metas específicas de manejo o de políticas suele ser importante examinar no sólo la diversidad de composición--genes, especies y ecosistemas--sino también la diversidad de la estructura y las funciones de los ecosistemas.

Flujo de Energia y Equilibrio de los Ecosistemas

La energía "fluye" a través del ecosistema como enlaces carbono-carbono. Cuando ocurre respiración, los enlaces carbono-carbono se rompen y el carbono se combina con el oxígeno para formar dióxido de carbono (CO2). Este proceso libera energía, la que es usada por el organismo (para mover sus músculos, digerir alimento, excretar desechos, pensar, etc.) o perdida en forma de calor. Las flechas oscuras en el diagrama representa el movimiento de esta energía. Observe que toda la energía proviene del sol, y que el destino final de toda la energía es perderse en forma de calor. ¡La energía no se recicla en los ecosistemas!
Los nutrientes inorgánicos son el otro componente mostrado en el diagrama. Ellos son inorgánicos debido a que no contienen uniones carbono-carbono. Algunos de estos nutrientes inorgánicos son el fósforo en sus dientes, huesos y membranas celulares; el nitrógeno en sus aminoácidos (las piezas básicas de las proteínas); y el hierro en su sangre (para nombrar solamente unos pocos nutrientes inorgánicos). El flujo de los nutrientes se representa con flechas claras. Observe que los autótrofos obtienen estos nutrientes inorgánicos del 'almacen' de nutrientes inorgánicos (usualmente el suelo o el agua que rodea la planta). Estos nutrientes inorgánicos son pasados de organismo a organismo cuando uno es consumido por otro. Al final, todos los organismos mueren y se convierten en detrito, alimento para los descomponedores. En esta etapa, la energía restante es extraida (y perdida como calor) y los nutrientes inorgánicos son regresados al suelo o agua para se utilizados de nuevo. Los nutrientes inorgánicos son reciclados, la energía no.
Para resumir: En el flujo de energía y de nutrientes inorgánicos, es posible hacer algunas generalizaciones:
1. La fuente primaria (en la mayoría de los ecosistemas) de energía es el sol.
2. El destino final de la energía en los ecosistemas es perderse como calor.
3. La energía y los nutrientes pasan de un organismo a otro a través de la cadena alimenticia a medida que un organismo se come a otro.
4. Los descomponedores extraen la energía que permanece en los restos de los roganismos.
5. Los nutrientes inorgánicos son reciclados pero la energía no.

El equilibrio de los ecosistemas
Un ecosistema está en equilibrio cuando es estable, es decir, cuando no cambia o cambia muy poco con el tiempo. Para que un sistema esté en equilibrio no deben producirse grandes cambios en las condiciones ambientales (clima, suelo y agua), el número de individuos ha de mantenerse constante y no deben existir factores externos (contaminación, tala de árboles) que alteren el ecosistema.
Si por cualquier razón, se rompe el equilibrio de un ecosistema, este puede desaparecer y ser sustituido por otro.

Organizacion de los Ecosistemas

Hacia 1950 los ecólogos elaboraron la noción científica de ecosistema, definiéndolo como la unidad de estudio de la ecología. De acuerdo con tal definición, el ecosistema es una unidad delimitada espacial y temporalmente, integrada por un lado, por los organismos vivos y el medio en que éstos se desarrollan, y por otro, por las interacciones de los organismos entre sí y con el medio. En otras palabras, el ecosistema es una unidad formada por factores bióticos (o integrantes vivos como los vegetales y los animales) y abióticos (componentes que carecen de vida, como por ejemplo los minerales y el agua), en la que existen interacciones vitales, fluye la energía y circula la materia.
Un ejemplo de ecosistema en el que pueden verse claramente los elementos comprendidos en la definición es la selva tropical. Allí coinciden millares de especies vegetales, animales y microbianas que habitan el aire y el suelo; además, se producen millones de interacciones entre los organismos, y entre éstos y el medio físico.
La extensión de un ecosistema es siempre relativa: no constituye una unidad funcional indivisible y única, sino que es posible subdividirlo en infinidad de unidades de menor tamaño. Por ejemplo, el ecosistema selva abarca, a su vez, otros ecosistemas más específicos como el que constituyen las copas de los árboles o un tronco caído.
El hábitat y el nicho ecológico
Dos conceptos en estrecha relación con el de ecosistema son el de hábitat y el de nicho ecológico. El hábitat es el lugar físico de un ecosistema que reúne las condiciones naturales donde vive una especie y al cual se halla adaptada. El nicho ecológico es el modo en que un organismo se relaciona con los factores bióticos y abióticos de su ambiente. Incluye las condiciones físicas, químicas y biológicas que una especie necesita para vivir y reproducirse en un ecosistema. La temperatura, la humedad y la luz son algunos de los factores físicos y químicos que determinan el nicho de una especie. Entre los condicionantes biológicos están el tipo de alimentación, los depredadores, los competidores y las enfermedades, es decir, especies que rivalizan por las mismas condiciones.
Una unidad dinámica
El ecosistema experimenta constantes modificaciones que a veces son temporarias y otras cíclicas (se repiten en el tiempo).
Los elementos bióticos pueden reaccionar ante un cambio de las condiciones físicas del medio; por ejemplo, la deforestación de un bosque o un incendio tienen consecuencias directas sobre la fertilidad del suelo y afectan la cadena alimentaría.
La sucesión ecológica
La sucesión ecológica es el reemplazo de algunos elementos del ecosistema por otros en el transcurso del tiempo. Así, una determinada área es colonizada por especies vegetales cada vez más complejas. Si el medio lo permite, la aparición de musgos y líquenes es sucedida por pastos, luego por arbustos y finalmente por árboles. El estado de equilibrio alcanzado una vez que se ha completado la evolución, se denomina clímax. En él, las modificaciones se dan entre los integrantes de una misma especie: por ejemplo, los árboles nuevos reemplazan a los viejos.Hay dos tipos de sucesiones: primaria y secundaria. La primera ocurre cuando se parte de un terreno en donde nunca hubo vida. Este tipo de proceso puede durar miles de años. La sucesión secundaria es la que se registra luego de un disturbio, por ejemplo, un incendio. En este caso el ambiente contiene nutrientes y residuos orgánicos que facilitan el crecimiento de los vegetales.
La cadena alimentarla
En el funcionamiento de los ecosistemas no ocurre desperdicio alguno: todos los organismos, muertos o vivos, son fuente potencial de alimento para otros seres. Un insecto se alimenta de una hoja; un ave come el insecto y es a la vez devorada por un ave rapaz. Al morir estos organismos son consumidos por los descomponedores que los transformarán en sustancias inorgánicas.
Estas relaciones entre los distintos individuos de un ecosistema constituyen la cadena alimentarla.
Los productores o autótrofos son los organismos vivos que fabrican su propio alimento orgánico, es decir los vegetales verdes con clorofila, que realizan fotosíntesis. Por medio de este proceso, las sustancias minerales se destransforman en compuestos orgánicos, aprovechables por todas las formas vivas. Otros productores, como los quimiosintetizadores -entre los que se cuentan ciertas bacterias-, elaboran sus compuestos orgánicos a partir de sustancias inorgánicas que hallan en el exterior, sin necesidad de luz solar.
Los consumidores, también llamados heterótrofos, son organismos que no pueden sintetizar compuestos orgánicos, y por esa razón se alimentan de otros seres vivos. Según los nutrientes que utilizan y el lugar que ocupan dentro de la cadena, los consumidores se clasifican en cuatro grupos: consumidores primarios o herbívoros, secundarios o carnívoros, terciarios o supercarnívoros y descomponedores.
Los herbívoros se alimentan directamente de vegetales. Los consumidores secundarios o carnívoros aprovechan la materia orgánica producida por su presa. Entre los consumidores terciarios o supercarnívoros se hallan los necrófagos o carroñeros, que se alimentan de cadáveres.
Los descomponedores son las bacterias y hongos encargados de consumir los últimos restos orgánicos de productores y consumidores muertos. Su función es esencial, pues convierten la materia muerta en moléculas inorgánicas simples. Ese material será absorbido otra vez por los productores, y reciclado en la producción de materia orgánica. De esa forma se reanuda el ciclo cerrado de la materia, estrechamente vinculado con el flujo de energía.
Esta organización de los ecosistemas es válida tanto para los ambientes terrestres como para los acuáticos. En ambos se encuentran productores y consumidores. Sin embargo, los ecosistemas terrestres poseen mayor diversidad biológica que los acuáticos. Precisamente por esa riqueza biológica, y por su mayor variabilidad, los ecosistemas terrestres ofrecen más cantidad de hábitats distintos y más nichos ecológicos

Objetivos de las Ciencias Naturales

El área de ciencias naturales se compromete a colaborar de la mejor manera para que los jóvenes, al finalizar el décimo año, hayan logrado los Objetivos de la educación básica ecuatoriana, y sean capaces de:

1. Conocer y comprender la anatomía y fisiología humanas, para mejorar su calidad de vida con hábitos de higiene, alimentación balanceada, comprensión del sexo y del ejercicio físico y mental, que permita el bienestar personal y social.
2. Desarrollar respeto por la naturaleza y una actitud critica frente a la utilización de los recursos naturales y al deterioro del medio.
3. Identificar y explicar los fenómenos físicos y químicos, espontáneos o inducidos, que actúan como agentes de cambio en la naturaleza.
4. Aplicar en la vida cotidiana los conocimientos teórico-prácticos para dar soluciones validas y concretas.
5. Comprender la interacción entre ciencias, tecnológica y sociedad para asumir una actitud crítica y participativa frente a ellas.
6.Utilizar el método científico en pequeños proyectos de investigación y fundamentalmente como hábito de vida individual con proyección social.
7. Identificar, respetar y valorar las interpretaciones científicas de la naturaleza desde la cosmovisión de las diversas culturas.

Perfil del Estudiante Colonista

Son las distintas manifestaciones que fortalecen las dimensiones del ser a lo largo de su proceso formativo que lo identifican como estudiante y lo enriquecen en su proyecto de vida.

RASGOS CARACTERÍSTICOS:
1.Autónomo, capaz de ser crítico para tomar decisiones.
2. Solidario, capaz de compartir con otras personas y ponerse al servicio de la Comunidad Educativa.
3.Honesto, capaz de optar siempre por la verdad, actuar con idoneidad y rectitud.
4. Tolerante y Pacífico, capaz de resolver los conflictos por la vía del diálogo civilizado y la no-violencia activa, respetar y aceptar puntos de vista y opiniones del otro
5. Creativo, capaz de integrar, proyectar sus conocimientos y habilidades en forma original e innovadora, dar respuestas a las exigencias y necesidades de una sociedad cambiante
6. Responsable, capaz de asumir y cumplir sus compromisos como persona, hijo(a), estudiante, creyente, etc., consciente de que sus acciones favorecen o limitan el desarrollo social
7.Amoroso, capaz de propiciar relaciones interpersonales basadas en el respeto mutuo y la empatía
8. Ecológico, con profundo sentido de conservación y respeto hacia la naturaleza, comprometido con el mejoramiento de su entorno (familiar, social, escolar)
9. Investigativo, con espíritu de excelencia académica, procurar la construcción de nuevos saberes que favorezcan el desarrollo científico, tecnológico y social
10. Creyente, convencido de que Dios es el principio y fundamento de la realización humana; integra a su vida cotidiana los valores de la fe, la justicia, la reconciliación, la esperanza y la caridad
11. Líder, capaz de transformar el contexto social, político y económico con base en la equidad.
12. Cívico, capaz de expresar su sentido de pertenencia a través del respeto y el amor por su familia, Institución, región y país; y con espíritu altruista asumir la condición de ser colombiano.

Vision

Seremos la Institución educativa de la Región Caribe, Lider en la Formación Integral de Personas, capaces de gestar cambios cientificos, tecnologicos, sociales y economicos que propicien mayor productividad en la sociedad garantizando mejor calidad de vida.

Mision

Somos una institucion educativa que forma personas con calidad humana y pensamientos critico capaces de resolver situaciones y adaptarse a los diferentes cambios; que con saberes cientificos y tecnologicos construyen su proyecto de vida a traves de una formación integral con enfasis en ciencias naturales para la niñez y juventud que vive en el departamento del atlántico que se proyecta a un ambito nacional e internacional.